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The linearized problem of Kelvin wave diffraction at  the sharp edge of a thin 
semi-infinite barrier on a rotating earth is considered in the case when a dis- 
continuity in depth stems from the edge in a direction parallel to the barrier. 
The solution in closed form is obtained using the Wiener-Hopf technique. 

It is shown that the direct effect of the depth discontinuity is always to divert 
additional energy away from the barrier, in the form of outgoing cylindrical 
waves if the period is small, and provided conditions are suitable as double 
Kelvin waves if the period is sufficiently long. Results suggest that Kelvin waves 
which are the most persistent in following an irregular coastline bounding a sea 
of abruptly varying depth are of intermediate period. 

1. Introduction 
Recmt papers by Buchwald (1968) and Packham & Williams (1968) have 

dealt with the diffraction of Kelvin waves at a sharp bend bounding a sea of 
uniform depth. If 7 > 1,  where 7 is the wave period in pendulum-days, the incident 
Kelvin waves are diffracted with no loss in energy. However if r < 1, it  is possible 
for energy to be transmitted to infinity by means of outgoing cylindrical waves, 
which leads in consequence to a diminution in amplitude of the diffracted Kelvin 
wave. This effect becomes more marked the smaller the value of 7 taken. 

One purpose of the present paper is to study, in the case 7 < 1,  a typical dif- 
fraction problem, with the inclusion of an abrupt change in depth in order to 
evaluate the effect of the depth discontinuity on diverting energy away from the 
boundaries. In  addition, the corresponding case of waves of long period 7 > 1 
is of some interest. Longuet-Higgins (1968) shows that a system of double Kelvin 
waves of long period is capable of travelling along the depth discontinuity pro- 
vided the circumstances are favourable and the shallower water is to the right 
of the direction of propagation in the northern hemisphere and to  the left in 
the southern hemisphere. Waves of this type would be trapped by the discon- 
tinuity if a local disturbance such as a storm contained components of long 
period. This question has been considered by Mysak (1969) for the case of either 
a transient or a time-periodic wind strew which is suddenly applied to an other- 
wise undisturbed sea surface. In the present paper the generation of double 
Kelvin waves is also considered, but here the long period energy is to be supplied 
by a Kelvin wave moving along a coastline in the vicinity of the abrupt change 
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in depth. This is a situation which can be envisaged as taking place a t  many 
places on the earth, as for example a Kelvin wave moving southwards down the 
Pacific coast of South America emerging into shallower water as it rounds Cape 
Horn and the Palkland Islands. Again a northward moving Kelvin wave along 
the Californian coast could in theory set up a westward moving double Kelvin 
wave along the Mendocino escarpment since the shallower water lies to the north. 

2. Formulation of the problem 
Consider a horizontal region of water rotating about a vertical axis with 

angular velocity 4 f i n  the same sense as in the northern hemisphere. Horizontal 
rectangular co-ordinates (x, y) are now defined and it is assumed that the z axis 

Depth 11, t y  
Diffracted Kelvin wave 

__t s 
Double Kelvin wave 

Depth Ii2 

FIGURE 1. Physical plane when a double Kelvin wave is produced. 

divides the flow into two regions of constant depth hn, adopting the convention 
that n = 1 for y > 0, and n = 2 for y < 0. Separating the regions along the x axis, 
there is a thin solid barrier present for x < 0, and a discontinuity in depth for 
z > 0, as illustrated in figure 1. 

Assuming that the motion is described by the linearized shallow water theory 
the equations of motion are 

aun ac, 
x - f v n  =-9,,) 

and the equation of continuity is 

(2.2) 

(2.3) 

Here (u,, v,) are the velocity components at  time t in the (2, y) directions, <, 
is the free surface elevation above its mean level, and g is the acceleration of 
gravity. Allowing for a time dependence of e-id then (2.1), (2.2) yield, 

(2.5) 
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Inserting u,, v, in (2.3) gives 

defining 

At the solid barrier, the normal fluid velocity is zero, which gives rise to the 
boundary condition for n = 1 , 2  

v,(x,O) = 0, when x < 0. (2.7) 

At the discontinuity, following Longuet-Higgins (1 968)) the surface elevation and 
the normal component of the flux are taken to be continuous, and thus 

[c,]: = 0, [ h , ~ ~ ] ~  2 = 0 for x > 0. 

It is now assumed that 

{, = exp {(ios -fy)/cl) + $1 for n = 1, y > 0, (2.10 a)  

= $2 for n = 2, y < 0. (2.10 b )  

The first term on the right-hand side of ( 2 . 1 0 ~ )  represents an incident Kelvin 
wave for y > 0 travelling from x = -a left to right along the solid barrier with 
speed c1 (as shown in figure 1). The resulting motion is then conjectured to be: 
(i) a diffracted Kelvin wave for y < 0 moving right to left along the solid barrier 
to x = - co with speed c2 giving a contribution to c2 of the form 

$2 = A exp {( - i C X  -fY,/C,), (2.11) 

and (ii) a transmitted double Kelvin wave travelling along the depth dis- 
continuity to x = + a of the form 

$, = B exp {imx F (k: + m2)* y> (2.12) 

provided m is a real root of the equation 

(hl- h,) mf = hlr(m2 + /I:)*+ h2a(m2 + /I$);. (2.13) 

In  (2.12) the convention is introduced that the upper sign is taken for n = 1, 
and the lower sign for n = 2. The relations (2.12) and (2.13) both stem directly 
from the work of Longuet-Higgins (1968) on double Kelvin waves. In  the same 
work it is shown that these waves only arise if the depth ratio y = h,/h2 > 1, and 
providedf > o(y + l)/(y - 1). In  general, however, in this paperf is not restricted, 
but may take any value. 

of (2.6) satisfying 
the boundary conditions (2.7), (2.8) and (2.9) which will lead to a determination of 
IAl, IBI, the amplitudes of the waves directly associated with the barrier and 
discontinuity respectively at  infinity. To satisfy the radiation condition at  
infinityitwill be sufficient to assume that u has a positive imaginary part cri which 
will eventually be allowed to  go to zero to obtain the desired solution which is 
periodic in time. The incident wave with cri > 0 may then be thought of growing 

Thus the problem is reduced to that of finding the solution 
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from small values like eait, while at the same time having an smpIitude decreasing 
as e-'ix in the positive x direction. The secondary waves due to the presence of 
the barrier and the depth discontinuity will then die out a t  large distances from 
x = 0. This may be seen from equations (2.10) to (2.12) since $,is O(eUi"ic2) a8 
x + --03 and $, is O(e-iz) or O(e-biX/C1) as x --f + 00, where mi is the imaginary 
part of m. Here it has been anticipated that $, must incorporate a wave-like 
component which cancels out the incident Kelvin wave as x -+ + co. In addition, 
mJ > 0, for small r.i > 0, since dr/dm + cG as vi -+ + 0, where cg is positive being 
the group velocity of the double Kelvin waves. 

3. Use of Fourier transforms 

right-handed Fourier transforms are defined as 
Following a notation close to that adopted by Noble (1958) left-handed and 

@,(a, y) = @$(a, Y) + @;(a, Y), (3.1) 

where 

and 

for a = a, + iai. 
Transforming (2.6) then 

awn/ay2 - r: = 0, 
where r, = (a2 + k2,)t.  

The solution of (3.3) satisfying @, -+ 0, as y -+ co is 
@,(a, y) = D,(a) e+nu. (3.4) 

Thus @,(a, y) has branch points at  a = ik,. Defining 6 to be the minimum 
value of mi, r i / c n ,  Re (k,), then it follows that @:(a, y) is a regular function of a 
for all a, > - 6 while @;(a, y) is a regular function for all ai < S. 

Considering now the boundary conditions, then on transforming using ( 2 .  lo), 

ik,, 

i 1 (2.8) becomes 
@:(a'0)+(2rr)t(a+(a/c,)) = @$(a,O). (3.5) 

By means of (2 .5 ) ,  (2.10) and (3.2), the boundary condition (2.7) may be trans- 
formed to the form 

(3.6) 

Treating the condition (2.9) in a similar manner it can be written in a form which 
defines a function $+(a) regular for ai > - 6, i.e. 

(3.7) 

ia{d@,/dy},=, - iaf@,(a, 0) +f$J - 0 , O )  = 0. 

$+(a) = h,ria{d@,+/dy),,o - iaf@,+(a, 0) -f$J + 0,O)l 

for n = 1 or 2. 

now be combined to give 

for n = 1 or 2. 

Assuming the continuity condition $,( - 0,O) = $,( + 0,O) (3.6) and (3.7) may 

$+(a) = h,[ia{d@,/dy},=o - iaf@,(a, 011 (3.8) 
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The equation (3.8) is now in a form where (3.4) can be inserted directly and yields 

@+(a) = h,D,[ T im, - iaf] 
for n = 1 or 2. 

Now (3.1) and (3.4) give on y = 0,  

D,(a) = @:(a, 0) + @;(a, 0). 

D2(a) -D,(a) = @$(a, 0) - @>,+(a, 0)  + @;(a, 0) - @;(a, 0). 

Thus it follows that 

Using (3.5) then 

(3.9) 

(3.10) 

(3.11) 

where r-(a) = aqa, 0 )  - a q a ,  0) (3.12) 

is a regular function of a for ai c 6. 

deduced that 
Finally eliminating Dl(a) and B,(a) in (3.11) by means of (3.9) it may be 

i 1 
$+(a) I(a) = -- +ir-w, (3.13) 

(2704 (a+ (+I)) 

where (3.14) 

The equation (3.13) contains two unknown functions @+(a) and r-(a). Neverthe- 
less, since each function is regular in its respective half plane, the equation is of 
a form in which eaoh function may be determined by the Wiener-Hopf method, 
provided I(a) can be successfully factorized into two parts separately regular in 
the different half planes. 

4. The factorization of 1(a) 
It can be seen from (3.14) that I@) vanishes when a = -m  if m satisfies 

(2.13), the condition for a double Kelvin wave. In  addition, the factors in the 
denominator of I(a) make the denominator vanish when af mn = 0, i.e. if 
a = T u/c,. It is convenient therefore to extract these factors and to define a 
function K(a) ,  regular for - 6 < a < 6, by means of the relation 

where (4-2) 

is a constant. 

&+ 0. Moreover, as a -+ +a, K(a)  -f 1, while if a + -a, K(a) --f J ,  where 
By its definition K(a)  cannot vanish or become infinite on the real a axis as 
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In (4.1 ) m is chosen to be the real root of (2.13) when it exists, but if it does not 
exist, i.e. iff < b ( y +  l)/(y- 1)  for y > 1 or if y < 1 then m is chosen to be any 
complex constant such that mi > 6. It will be seen later for this case that the 
arbitrary choice of m, whose introduction facilitates the factorization of I ( a )  
will cancel out in obtaining results of physical interest. 

To factorize X ( a )  it is necessary to adapt slightly theorem C given by Noble 
(1958) to allow for the fact that as a + -00, K(a)  + J $; 1, as wcll as to ensure 
convergence of all integrals appearing in the analysis. To this end the function 
log K(p)/(/3 - a) is integrated in the p plane over a rectangle, containing the 
point p = a, with corners at  p = 2 iso -Rand k is, + R,, where So < 6. In. addition, 
the function log J / ( p  - a )  is integrated over a rectangle with corners at 

p =  +i6,,-R and /3= ki&. 

Cauchy's integral theorem is then applied and allowing R and R, + 00 it follows 
that 

where choosing the appropriate upper or lower signs, 

K(a)  = K+(a) K-(a), (4.4) 

dP log K ~ - log J log (a  * is,) 
P-a 

Here the convergence of the integrals has been ensured and K+(a) is regular for 
ai > -So > - 6 and K-(a) is regular for ai < So < 6. 

5. Solution by the Wiener-Hopf technique 
Using (4.1) and (4.4), (3.13) may now be rewritten in the form 

in which the left-hand side is regular for ai > -So, and the right-hand side is 
regular for ai < 6,. Each term on the left-hand side of (5.1) tends to  zero as 
ai -+ 00, and by the usual arguments based on Louville's theorem it may be 
deduced that each side of (5.1) is identically zero. 

Thus it follows that 

( 5 . 2 )  c1 +CZ 

= (2744 HK-( - ../c,) K+(a) (a  + m) . 



Kelvin diffraction at a depth discontinuity 753 

Finally substituting for @+(a) in (3.9) to find D,(a), and then taking the Fourier 
inverse of (3.4) yields the required solution, 

exp { 7, y -  im} da 
K-( - CT/C,) K+(a) (a + m )  ( T ic7, - iaf) * (5.3) 

6. The diffracted and transmitted waves 
Waves with non-zero amplitudes a t  infinity will arise only from those poles of 

the integrand in (5.3) which approach the real axis as ai -+ 0. Recalling the 
radiation condition the residues at these poles must be evaluated before the 
limit C T ~  -+ 0 is applied. Before considering the contributions from the obvious 
poles a = CT/C=, and a = - m (if rn is real) i t  is necessary to inquire if the function 
K+(a) which occurs in the integrand of (5.3) has any zeros on the real a axis as 
cri -+ 0, leading to further wave-like contributions. 

From (4.5), provided a is real and allowing C T ~ ,  and thus So, to tend to zero, 

Iff > CT (ai = 0) the path of integration I? is along the real /? axis except where 
it passes below = a and above p = - c/cl along small semi-circular paths. If 
f < CT, as ai + 0 the branch points of K(P) approach the real axis a t  /3 = K,, 

for n = 1,2, where K: = - ki = (c+ - f 2 ) / c i .  In  taking r these branch points must 
be excluded by passing below at p = - k,, - k, and above at  /3 = k,, k,. 

Considering now the residue from the pole p = a in the integrand of (6.1) i t  
may be directly inferred that as a varies along the real axis K+(a) can only vanish 
where the function K ( a )  has a zero. Since K ( a )  has been so constructed to have 
no such zeros on the real axis, it is concluded that no waves of non-zero amplitude 
for large x may originate from the K+(a) term. This conclusion is further illus- 
trated by results (6.3), (6.5) obtained below. 

Returning to (5.3) the waves occurring for large 2 are now considered in detail. 
The pole at  a = -a/cl contributes as x --f co for y > 0. As to be expected its 
residue yields a Kelvin wave in this region which exactly cancels out the incident 
Kelvin wave given in (2.10 a). 

The diffracted Kelvin wave which takes the form (2.1 1) may be obtained from 
the pole a = a/c2 yielding 

K,, 

A = -  Y (c1+ c2) 

h2H(y2-a2) (m+c,)K-(  -a/cl)K+(CT/c,)' 

In (6.2) it is now permissible to allow C T ~  + 0 and take cr to be entirely real. The 
amplitude I A I of the diffracted wave is of particular physical interest and three 
cases arise in its determination. 

(i) Iff > a(y + l)/(y - 1) for y > 1, as C T ~  -+ 0, misreal and K(P) is real, bounded, 
and has no zeros for all real p. Thus by (6.1) 

(6.3) 

if a is real, since the only contributions to this modulus emanate from the semi- 
circular arcs of I? excluding the poles /3 = a, ,13 = - CT/C,. 

(K-( - CTfC,) K+(a)l = (K(  - CT/Cl) K(a))$, 

48 F L M  45 
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(ii) If cr < f < a(?+ l) /(y- 1) for y < 1, or if CT < ffor y > 1, then m has been 
chosen such that its imaginary value mi > 0. Now introduce a function 

L(a) = (a + m) K(a)  

which is real for all real a. Then, since for real a 

it follows from (6.1) that 

K+(a) (a+m) = exp 

With similar reasoning to case (i), therefore for a real it  follows that 

IR-( -fT/cl)K+(a) (a+m)J = (L( -cr/C1)L(a))t. (6.5) 

(iii) I f f  < cr, for all y, mi > 0 and (6.4) again follows but now L(p) is no longer 
real on the real p axis due to the branch points at p = K ~ .  The result 
corresponding to (6.5) is therefore more complicated. Only the case a > 0 was 
in fact required and this was more conveniently obtained by contour integration 
in terms of an integral over the imaginary /3 axis leading to the result ( 6 . 6 ~ )  given 
below. 

To relate the present work directly to that of Longuet-Higgins the following 
non-dimensional variables are defined, T = f/a, E = f2/c?m2, where T is the wave 
period measured in pendulum-days and E is a parameter dependent on m the 
wave-number of the double Kelvin wave. Putting a = g / c 2  in cases (i)-(iii), (6.2) 
yields for the diffracted wave amplitude 

K ~ ,  

( 6 . 6 ~ )  

= yB for (ii), (6.6h) 

= 277% exp ( ~ ( y ,  7 ) )  for (iii j. ( 6 . 6 ~ )  

where N ( s )  = y ( s 8 + 1 - r 2 ) ~ + ( ~ 2 + ( l - r 2 ) y ) ~ - s 2 ( y -  1)272. 

When the depth discontinuity vanishes, i.e. when y = 1, the integral in ( 6 . 6 ~ )  
may be evaluated exactly yielding 

1’1 = ( ( l - r 2 ) 4 + 1 /  . 
This result agrees with the work of Packham & Williams when r < 1 in the case 
of a wedge of angle 27r. 

Finally attention is turned to the double Kelvin wave, which occurs only in 
case (i). Evaluating the residue at  a = --m, the wave is of the form (2.12) where 

(6.71 

(1-+)4-1 t 

B =  c1+ c2 

Hh,(ym + a(k2, + m2)4) K-( - cr/cl) K+( - m) ’ 
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where n may take either value n = 1 or 2 in virtue of the dispersion relation 
(2.13). Taking the limit vi --f 0 and applying (6.3) for a = -rn then 

c1+ c2 

I B I  = Hh,(yrn+v(Ki+m2)t)(K( -cr/c1)K(-rn))4’ 

Thus in terms of non-dimensional variables 

where X = [ e ( ~ ~ - l ) + ~ ~ ] &  and T = [ y e ( ~ ~ - l ) + ~ ~ ] * .  Using (2.13) the variables 
7, y, 8 are related by the dispersion relation 

y X + T - ( y - l ) ~ z =  0, (6.9) 

which is illustrated in figure 3 of Longuet-Higgins (1968). As e -+ 0, it can be 
deduced from (6.9) that 7 -+ (y+ l)/(y- I), while from (6.8) 

(6.10) 

This completes details of those waves which have finite amplitude at  infinity. 
However, as mentioned in 9 1 if 7 < 1, a system of cylindrical waves can be 
set up which propagate energy away from the boundary. These waves may be 
estimated at large distances from the boundary by Kelvin’s method of stationary 
phase. The contributions arise from (5.3) on integrating between the branch 
points a = +_ K, for n = 1,2, putting 7, = - i ( ~ i  -a2)& and are given by 

in terms of polar co-ordinates x = r COB 8, y = r sin 13. The amplitude of these 
waves then follows as before using (6.4). 

7. Energy flux 
For 7 > 1, in cases (i) and (ii), the flux of energy to infinity must be entirely 

accounted for by the Kelvin waves and by the double Kelvin wave when present. 
Invoking the conservation of this energy provided a useful check on both the 
accuracy of the calculations carried out, described in 3 8, as well as on the validity 
of the theory. This was especially pertinent in case (i). The situation is different 
in case (iii), when 7 < 1, since a proportion of the energy is carried by outgoing 
cylindrical waves of vanishing amplitude at infinity, which are not dependent 
on the boundaries of the flow for their maintenance. 

Considering the double Kelvin wave, the sun1 of the kinetic and potential 
energy per unit length in the x direction transmitted as x + co is 

48-2 
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putting n = 1 for y > 0, and n = 2 for y < 0. Using (2.4)) ( 2 . 5 ) ,  (2.10) and (2.12), 
then 

E -  E M 2  
- 2s3 - 1)2 yST 

x ( y ~ ( 7 ~ -  1)2(T+X)+(~2+ 1) (72+T2) ( y T - ~ Y ) - 4 7 ~ # T ( y -  l)} (7.2) 

writing +pgctla2 = E.  This energy travels with the group velocity of the double 
Kelvin waves 

(7.3) 
d c  CiS((y- 1)7T#-f(S+yT)) c , = - =  
dm (y-1)72T#-~*(T+y8) * 

Similar determinations of the total energy per unit length may be made for each 
Kelvin wave giving 

1 IAl2E 
r 7Y 4 

E I = - E ,  ED=---  

for the incident and diffracted waves respectively. Unlike the double Kelvin 
wave, the energy is always shared equally between the potential and kinetic 
energy in a Kelvin wave. The Kelvin waves are not dispersive and thus the 
energies E ,  and ED travel with velocities c1 and c2 respectively. The conservation 
of energy flux for the wave system in region I may therefore be expressed as 

E I c ~  = EDC2+E,C, .  (7.4) 

8. Conclusions 
The flux ratio of diffracted energy to incident energy F = E D c ~ / E , c ~  is given 

in figure 2 for values of y in the cases7 = f/a = 0.6 ,0-8 ,0 .97 ,1 .3 ,1 .5 ,2 ,5 .  In  case 
(ii) if y < 1, 7 > 1, or if y > 1, (y+l)/(y--1) > 7 > 1, then F = 1 and all the 
energy is diffracted, since no Kelvin wave, or any other wave allowing trans- 
mission of energy to infinity, is possible. The amplitude \A1 of the diffracted 
Kelvin wave is thus the greatest possible, i.e. IAl = yi .  In  case (iii) if 7 < 1 for 
all y, figure 2 shows that as 7 decreases so does F ,  the energy associated with the 
diffracted wave. The balance of the energy must be transmitted away from the 
boundary in the form of cylindrical waves. This result is in accordance with the 
work of Buchwald and Packham & Williams on Kelvin wave diffraction at sharp 
bends. In  the present work there is an additional factor to take into account, 
i.e. the occurrence of a discontinuity in depth. Figure 2 shows that if a depth 
discontinuity exists (y + 1) it causes a further reduction in diffracted energy, 
increasing the transmission of energy away from the boundary. 

If 7 < 0-8, the energy dissipated from the boundary is already considerable 
amounting to about 75% of the incident energy even with no discontinuity 
present. The bend presented to the incident wave here is of course the sharpest 
possible. Nevertheless, it does suggest that if a storm takes place in the vicinity 
of an irregular coastline producing Kelvin wave disturbances of many frequencies, 
those waves with large frequency will tend to be eliminated more readily from 
following the coastline, the tendency being enhanced by any abrupt changes in 
depth present. This result is of course irrespective of any other effects, e.g. due 
tQ viscosity or wave breaking. 
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In  case (i) if y > 1, T > (y+ l)/(y - 1)  no cylindrical waves are possible, but 
now the discontinuity provides an additional outlet for energy transmission in 
the form of double Kelvin waves. From figure 2 it  may be seen that for given 
discontinuity as 7 is reduced more energy flux is channelled into the diffracted 
Kelvin wave, a variation which is the reverse of that found in case (iii). Like the 
previous case this conclusion would be expected to have a general validity 
independently of the geometry of the boundaries and discontinuities present. 
For a coastline bounding a sea with many changes in depth, the Kelvin waves 
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FIGURE 2. The flux ratio lp of diffracted energy to incident energy as i t  varies with the 
discontinuity depth ratio y for various values of T ,  the wave period in pendulum days. 

which would now be more easily diverted from following the coastline are those 
with a long wave period, their energy being propagated along any abrupt changes 
in depth present near the coastline. If these depth changes then diminish and 
disappear, then as Longuet-Higgins infers, the energy would eventually appear 
in the record of the horizontal currents alone, instead of being shared with the 
surface elevations in the form of potential energy. 

As B -+ 0 and T --f ( y+  l)/(y- 1) the conditions for the existence of the double 
Kelvin waves becomes more critical, as does the sharing of energy flux between 
the two types of wave. The double Kelvin response is becoming more difficult 
to incite, and consequently more energy is being diffracted. As this critical region 
is approached the long wave theory is becoming less valid. The double Kelvin 
waves predicted have progressively smaller wavelengths, i.e. 2n/m = 2n-(c,/f )e4, 
and the wave disturbance is being concentrated progressively nearer the dis- 
continuity with larger amplitudes at  y = 0 as may be inferred from (6.10). It can 
also be shown that the energy associated with the double Kelvin wave in the 
critical region is large and O ( l / e ) ,  consisting mostly of kinetic energy rather than 
potential energy. However, there is no violation of the energy condition (7.4) 
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since it can be shown that this large energy travels along the depth discontinuity 
with a correspondingly smaller group velocity cc of O ( e f ) .  

To conclude, the above results may now be grouped together. The general 
pattern which emerges from the details of the particular model chosen here is 
that those Kelvin waves which are the most persistent in diffracting along 
irregularly shaped coastlines bounding a sea of abruptly varying depth are of 
intermediate wave period, in the range 0.9 < r < 3 approximately. 
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